Article by Professor Julie Bernhardt, Dr Ruby Lipson-Smith, Dr Aaron Davis
Professor Julie Bernhardt is Professor of Neuroscience at the Florey Institute of Neuroscience and Mental Health and has a background as a rehabilitation practitioner. Julie is passionate about the role of the built environment in healthcare and about combining the evidence-based practice of neuroscience with design. ORCID 0000-0002-2787-8484
Dr Ruby Lipson Smith is an environmental psychology researcher and leads several projects within NOVELL Redesign. ORCID 0000-0002-1702-814
Dr Aaron Davis is an architect by training and an expert in living labs and co-creation. He leads the NOVELL facilitation team and helps us to meaningfully engage with our co-researchers.ORCID 0000-0002-1477-7406
Diverse views, experiences and opinions make these conversations richer and bolder. As a clinician and a neuroscientist, Professor Julie Bernhardt began the Optimising Health Environments Forums at The Florey Institute of Neuroscience and Mental Health in Melbourne in 2013 because she wanted to meet people from a diverse range of fields who were interested in built healthcare environments. For Professor Bernhardt, healthcare environments should be considered part of our ‘intervention arsenal’ to improve patient outcomes, not simply a space in which care is delivered.
She hoped to have robust conversations about how we might work collectively across multiple fields of neuroscience, research, clinical care, building planning, designing and execution to optimise healthcare environments. Recognising the challenges inherent in trying to innovate during the designing and building of commissioned healthcare spaces, Professor Bernhardt and a team of likeminded clinicians and researchers decided to focus on creating an innovation project, grounded in research with a strong stakeholder engagement focus to redesign a healthcare facility and service.
Some time later, NOVELL Redesign, or the Neuroscience Optimised Virtual Environments Living Lab, was born. The demonstration project of NOVELL Redesign explores rehabilitation spaces for people with brain injury, especially stroke, because as a group, we know a lot about this aspect of healthcare.
The core project team includes experts in Neuroscience, Architecture, Rehabilitation, and Living Labs from the Florey Institute of Neuroscience and Mental Health, Swinburne University, Griffith University and industry partners including Silver Thomas Hanley (STH) Health Architecture. We work with a broad range of experts and collaborators from across Australia and the world.
As a Living Lab, stakeholder engagement and the bringing together of diverse groups of people is central to NOVELL Redesign. To this end, we are assembling a team of co-researchers, that range from people who have worked in rehabilitation environments, to stroke survivors with lived experience and their families, and designers and architects who shape the world around us. We are working with people who are interested in the healing power of sensory garden experiences, with people who help others find their way by wafting scents through the air, and with people who are passionate about improving the experience and outcomes of rehabilitation processes and facilities.
Our team are always looking for opportunities to engage, and to bring together diverse groups to build fascinating and insightful collaborations.
The NOVELL Redesign project is funded by the Felton Bequest and the University of Melbourne and has four main aims. These are to:
We are using the concept and framework of the Living Lab because the questions we are trying to answer are incredibly complex and can’t be tackled through traditional research processes. Here are just a few of the reasons why it can be difficult to create innovative designs in healthcare:
The Living Lab methodology can help us to address these problems by giving us a space where we can explore, and where we can dare to think differently. By (temporarily) setting aside some of the roadblocks, we can see what happens when we bring together a rich variety of co-researchers, experimenting and exploring using a ‘yes, and’ mindset rather than defaulting to ‘no, because’.
As with just about everyone, everywhere in the world, we had to pivot and adapt to working in the time of COVID-19. For a Living Lab, the inability to meet face-to-face presented a unique and very significant challenge, but our facilitation manager Dr Aaron Davis was able to lead our transition to a digital model of engagement. This meant building interactive online activities that we could work through with our co-researchers both in real-time in virtual workshop sessions, and asynchronously for those who were not able to participate in the fast-paced digital workshop environment.
The workshops built on past research of NOVELL researcher Dr Ruby Lipson-Smith, and explored concepts of safety and security, navigation, adaptability and flexibility, and blurred boundaries. You can see a short time-lapse of the activity in one of our workshops here.
We have had rave reviews about the process and are so excited that this is just the beginning of bringing everyone together to tackle this unique challenge. With any luck, in 2021 we hope to be able to meet each other face-to-face to continue the rich and exciting conversations we have started, but know that the digital collaboration skills we have developed are also invaluable.
Now that our Living Lab is established and growing, our next step is to begin the design and innovation process. We’ll be running a co-analysis process with our co-researchers in the first half of 2021 to organise and synthesise all the information that was generated in our virtual workshops.
This will culminate in the definition of an experiential design brief for stroke rehabilitation facilities which we will use to design immersive virtual prototypes that can be tested through computer modelling, and with a broad range of potential users and stakeholders. We’ll use the feedback we gather to refine the designs, before we bring them back to re-test again in an iterative design innovation cycle.
Ultimately, we are hoping that the insights we gain along the journey, as well as from the final prototype(s), will help to inform and radically shift the way we conceive and construct rehabilitation environments both in Australia and internationally.
Interactive activities – Vital Designs Workshop
Stroke causes a loss of blood supply to the brain, and, if not treated immediately, can result in death or severe disability (do you know how to recognise a stroke – remember to think F.A.S.T). There is predicted to be 1 million Australians living with the effects of stroke by 2050, and, after they have received acute care, many of these people will need some form of rehabilitation. The purpose of rehabilitation is to help people who have had a stroke to live a full life; to regain the skills or abilities that they may have lost as a result of stroke (e.g., re-learn to walk, talk, or use their arm), or to learn to adapt to their changed abilities (e.g., learn to use a walking frame).
While in rehabilitation, stroke survivors are encouraged to participate in repetitive practice – working to build new connections in their brain. Stroke survivors are also encouraged to be physically, cognitive, and socially active, as this can help brain recovery.
Rehabilitation is a unique and under-researched healthcare environment. Most of the past research and innovation in healthcare design has focused on acute care environments such as surgery or intensive care. People in acute care are often confined to bed, and the clinical priorities are diagnosis, infection control, bed rest, and ensuring that vital signs are stable.
In rehabilitation, however, patients are more alert and are required to be active, motivated participants in their care. The findings from acute healthcare contexts therefore might not be applicable in rehabilitation. We therefore chose stroke rehabilitation environments as the first demonstration project for the NOVELL Redesign Living Lab process.
Living Labs are all about working together. We welcome partners and co-researchers from industry, academia, government, and the community who are interested in contributing to the project, and in making rehabilitation environments better and more effective places.
Novell Redesign – Living Lab Partners
If we’ve sparked your interest in joining us, or you’re curious to learn more, remember to get in touch via our website or follow us on twitter.
By Dr Rhonda Kerr
Dr Rhonda Kerr has more than 35 years experience in health economics, health service and facilities planning. Her Ph.D examined the connection between funding for hospital buildings, medical equipment and systems with the effectiveness and efficiency of hospital services.
Australians involved in healthcare, and particularly hospitals, watched with growing concern as American and European hospitals were overwhelmed with patients arising from the COVID pandemic. We wondered how well our hospitals would cope when the pandemic came to Australia. COVID-19 has shone a light on weaknesses in many systems. What are the weaknesses in Australians hospitals? Clinicians required PPE for safety due to the “the constraints of the built environment, including the ageing infrastructure of most hospitals”[1]. After PPE and staff the concerns included:
These questions relate to the quality of planning and the quantity of capital invested in public hospitals. Concerns about these factors prompted the government to close private hospitals to gain additional beds and ICU beds in particular. So, would a system where every hospital had a continuous source of capital funds to improve and upgrade facilities and equipment provide a better basis for meeting the challenges for hospitals post-2020? So far border controls and good public health practices prevented our worst fears being realised, but what does the pandemic highlight as we fund, plan, build and equip hospitals?
Health Architects maintain form follows function however in my experience it is also true to say form follows finance. Hospital building projects are defined by their funding systems and budgets. My doctoral research assessed the funding needed to deliver the facilities, equipment and systems for effective and efficient clinical services in contemporary Australian hospitals.
My findings identified an Australian hospital capital funding system that:
Our system of funding hospitals does not effectively fund patient access to appropriate care in efficient hospitals [2]. Assessing the effectiveness of capital funding for Australian public hospitals compared with other OECD nations confirmed that the current system ranked below average for comparable nations. Nations that fund every hospital for the capital cost of the patients they treated (or Activity-Based Funding) provided better patient access and greater efficiency [2]. Australia has successfully used Activity-based Funding for operational costs in hospitals since 2013 [3, 4] but our system of capital funding has not progressed for over 50 years.
The system of capital funding in Australia has caused inequality of access to acute services and medical equipment. Patient access to appropriate facilities and equipment has been a key issue during the pandemic. Indeed, patient access is the most important of several measures of effectiveness for Australian public hospitals (Public Hospital Performance Indicator Framework)[5]. Inequality of public hospital distribution was a theme emerging from the 13 major qualitative reviews of health services this century. Key themes found for investment levels were requiring (i) more investment (n=7), and (ii) improved alignment with clinical requirements and standards (n=4). Access for indigenous and rural residents and funding for innovation were also referenced (n=4) [6-17].
In the critical area of medical equipment, a Senate review found poor access to medical imaging for some metropolitan areas and rural areas resulting in poorer care, particularly for trauma and stroke patients [18], p.14. There is insufficient planning for the replacement of medical equipment [19]. No prioritised list for equipment replacement exists and there are concerns regarding “transparency and rigour in how high value medical equipment replacement decisions are made” [20], p.6. For NSW, there was an absence of an effective funding model for medical equipment [21, 22].
The expectation of increasing precision in clinical practice is reducing the effective lifespans for some medical equipment (by from 10 to15 years) as resolution of images fails to meet contemporary standards [18] p.69. Similarly, medical equipment and technology changes are making some facilities redundant earlier than planned [23-25].
The absence of a national system of funding for digital medical records and contemporary information systems in hospitals is acknowledged as causing patients harm [26, 27]. A range of emerging technologies offer clinical improvement that are appropriate, sustainable and fit with clinical requirement [27, 28].
But currently, there is no process for funding the capital required for the implementation of the next generation of technologies [29]. These include, but are not limited to, artificial intelligence (AI) as a clinical aid [30, 31], wearable devices with real-time physiological outputs [28, 32, 33], Big Data [26, 28], precision and genomic medicine [28, 34].
The pandemic has changed expectations of hospitals from clinicians (who expect to have their personal safety embedded in hospital planning), politicians (who cannot risk infectious outbreaks in hospitals) and the community (who expect access to appropriate care when it is needed). To deliver these expectations when infectious disease is uncontrolled may require:
These changes to hospitals have costs and will need to be available for all clinicians and patients. All patients will expect access to high-quality contemporary clinical care, as our Medicare system guarantees. So we need to consider how to effectively and efficiently deliver the required changes.
Advances in technology impact on the need for investment in our hospitals
Effective capital funding to ensure patient access to appropriate clinical care in efficient Australian hospitals would be:
A national activity-based system of capital allocation based on clinical guidelines and diagnosis groups has been assessed as superior to the current system of capital funding allocation using the Public Hospital Performance Indicator Framework adapted for capital. Using the existing mechanisms for funding operational costs for hospitals a discreet separate fund for capital could be paid to each hospital. As with the system of funding for operational costs, capital costs would be shared by the Commonwealth and the states and territories for each group of patients with the same diagnosis. This would allow continuous and specific improvement of facilities, medical equipment, technologies and systems.
In summary, the pandemic has accelerated changes already happening in major hospitals. The difference is that safer hospitals are required for all patients and all staff. A national system of capital funding is the only method to achieve national improvement in safety and access to appropriate care. The old State funded project-by-project system for funding hospital is no longer fit-for-purpose. To make Australian hospitals fit-for-purpose beyond 2020 requires investment for every patient at Australian clinical and hospital standards.
This research has been formally examined as a doctoral thesis but is awaiting publication.
1. Ananda-Rajah, M., Veness, B. Miller, A. Heslop, D., Health care worker safety has fallen short of best practice. Insight plus MJA, 2020. 28 September, 2020 https://insightplus.mja.com.au/2020/38/health-care-worker-safety-has-fallen-short-of-best-practice/?utm_source=InSight%2B&utm_campaign=c9973be6e1-EMAIL_CAMPAIGN_2020_09_25_04_52&utm_medium=email&utm_term=0_7346f35e23-c9973be6e1-42113637.
2. Kerr, R. and D.V. Hendrie, Is capital investment in Australian hospitals effectively funding patient access to efficient public hospital care? Australian Health Review, 2018. 42(5): p. 501-513.
3. AIHW, Health expenditure Australia 2016–17. Health and welfare expenditure series no. 64. Cat. no. HWE 74., A.I.o.H.a. Welfare, Editor. 2018: Canberra. https://www.aihw.gov.au/getmedia/e8d37b7d-2b52-4662-a85f-01eb176f6844/aihw-hwe-74.pdf.aspx?inline=true. p. Table 3.6.
4. Biggs , A., Recent developments in federal government funding for public hospitals: a quick guide, P.o. Australia, Editor. 2018: Canberra https://www.aph.gov.au/About_Parliament/Parliamentary_Departments/Parliamentary_Library/pubs/rp/rp1819/Quick_Guides/FundingPH.
5. SCRGSP, S.C.f.t.R.o.G.S.P., Report on Government Services 2020, P. Commission, Editor. 2020: https://www.pc.gov.au/research/ongoing/report-on-government-services/2020/health/public-hospitals. p. Table 12A.57,.
6. Forster, P., Queensland Health Systems Review Final Report. 2005, Queensland Health,: Brisbane. p. 269-289.
7. Garling, P., Final Report of the Special Commission of Inquiry into Acute Care Services in NSW Public Hospitals. 2008: Sydney.
8. NHHRC, A Healthier Future for All Australians-Final Report of the National Health and Hospitals Reform Commission. 2009: Canberra. p. 168.
9. Menadue, J., Better Choices Better Health Final Report of the South Australian Generational Health Review. 2003: http://www.sahealth.sa.gov.au/wps/wcm/connect/f2f26480428ddf2ab41fb6e7eece1070/generationalhealthreviewreport-ce-0304.pdf?MOD=AJPERES&CACHEID=f2f26480428ddf2ab41fb6e7eece1070
10. Richardson, J., The Tasmanian Hospital System Reforms for the 21st Century Report of the Expert Advisory Group Review into key issues for public and private hospital systems in Tasmania. 2004, Tasmanian Department of Health and Human Services: http://www.dhhs.tas.gov.au/__data/assets/pdf_file/0004/8563/2004-06-Richardson-Report-v2.pdf.
11. Reid, M., A healthy future for Western Australians. Report of the Health Reform Committee. 2004, Health Department of WA: Perth.
12. Travis, D., The Travis Review.Final Report. Increasing the capacity of the Victorian public hospital system for better patient outcomes. , Department of Health Victoria, Editor. 2015: Melbourne https://www2.health.vic.gov.au/about/publications/ResearchAndReports/Travis-review-final-report-2015.
13. Australasian College for Emergency Medicine, 2018–1 Access Block Point Prevalence Survey Summary., A.C.f.E. Medicine, Editor. 2018, Australasian College for Emergency Medicine: 34 Jeffcott St. West Melbourne VIC 3003 https://acem.org.au/News/July-2018/Emergency-department-patients-in-SA,-TAS-and-ACT-a.
14. Australian Commission on Safety and Quality in Health Care and the Australian Institute of Health and a. Welfare., The Second Australian Atlas of Healthcare Variation. 2017, ACSQHC: Sydney http://acsqhc.maps.arcgis.com/apps/MapJournal/index.html?appid=d385b9facde44ff3b99c51ab750e1c28#.
15. Australian and New Zealand Intensive Care Society, ANZICS Centre for Outcome and Resource Evaluation Annual Report 2017. 2017, Australian and New Zealand Intensive Care Society( ANZICS): Melbourne https://www.anzics.com.au/annual-reports/.
16. Australian Medical Association, Public hospital report card 2018: an AMA analysis of Australia’s public hospital system. 2018, Canberra https://ama.com.au/system/tdf/documents/AMA%20Public%20Hospital%20Report%20Card%202018_0.pdf?file=1&type=node&id=48026.
17. Productivity Commission, Public and Private Hospitals, Research Report. 2009, Productivity Commission. p. LVII.
18. Australian Senate Community Affairs and References Committee, Availability and accessibility of diagnostic imaging equipment around Australia. 2018, Parliament of Australia,: Canberra https://www.aph.gov.au/Parliamentary_Business/Committees/Senate/Community_Affairs/Diagnosticimaging/Report
19. WA Auditor General, Management of Medical Equipment. 2017: Perth https://audit.wa.gov.au/wp-content/uploads/2017/05/report2017_08-MedicalEquipment.pdf.
20. Queensland Audit Office, Efficient and effective use of high value medical equipment Report 10 2016-17. 2017: Brisbane https://www.qao.qld.gov.au/sites/all/libraries/pdf.js/web/viewer.html?file=https%3A%2F%2Fwww.qao.qld.gov.au%2Fsites%2Fqao%2Ffiles%2Freports%2Fefficient_and_effective_use_of_high_value_medical_equipment_report_10_2016-17_0.pdf.
21. Audit Office of NSW, Medical equipment management in NSW public hospitals NSW Health. 2017: Sydney https://www.audit.nsw.gov.au/publications/latest-reports/medical-equipment-management.
22. Garling, P., Final Report of the Special Commission of Inquiry. Acute Care Services in NSW Public Hospitals. 2008, NSW Government: Sydney. p. 30.
23. Diez, K.L.K. Infrastructure Planning for hospitals in relation to a primary portfolio strategy. in Better Healthcare through Better Infrastructure. 2010. Edinburgh Scotland.: HaCIRIC Tanaka Business School University College London.
24. Sun, P.P., An Integrated Project Delivery Process, in The culture for the future of healthcare architecture. Proceeedings of the 28th International Public Health Seminar, R. del Nord, Editor. 2009, Alineaa Editrice,TESIS Interuniversity Research Centre.: Florence, Italy. p. 133-140.
25. Schinko, T.L., H., Strategic design of hospitals by life-cyles, in Health for all Cultural, Operational and Technological Influences 35th UIA/PHG International Seminar on Public Healthcare Facilities. Dalian, China 2015, R. del Nord, Editor. 2016, TESIS Inter-university Research Centre,: University of Florence, Italy.
26. Productivity Commission, Data availability and use, Inquiry Report. 2017: Canberra https://www.pc.gov.au/inquiries/completed/data-access/report/data-access.pdf.
27. Tan, Z.M.-G., R. Margelis, G., Clinicians can drive innovation in digital health age. MJA Insight, 2018 (29 30 July 2018).
28. CSIRO, Future of Health: Shifting Australia’s focus from illness treatment to health and wellbeing., C. Futures, Editor. 2018: Canberra https://www.csiro.au/en/Showcase/futureofhealth?featured=F29EDEB1728C4A92B579C7A5DC28BAD5.
29. Joe, K., Innovation Transformation, in Australian Healthcare Design 2000-2015, C. K, Editor. 2013, International Academy for Health and Design: Stockholm. p. 100-105.
30. Sampler, I., “It’s going to create a revolution”: how AI is transforming the NHS, in The Guardian. 2018: https://www.theguardian.com/technology/2018/jul/04/its-going-create-revolution-how-ai-transforming-nhs?utm_source=esp&utm_medium=Email&utm_campaign=GU+Today+AUS+v1+-+AUS+morning+mail+callout&utm_term=280152&subid=13574337&CMP=ema_632.
31. Dewey, M., The future of radiology: adding value to clinical care. The Lancet, 2018. 392(10146 August 11): p. 472-3.
32. Productivity Commission, Shifting the Dial: 5 Year Productivity Review, Inquiry Report . 2017: http://www.pc.gov.au/inquiries/completed/productivity-review#report. p. 17.
33. Phillips, B., New series: making the digital health revolution. MJA Insight, 2018(42 29 October 2018).
34. Williamson, R.A., W. Duckett, SJ. Frazer, IH. Hillyard,C. Kowal, E. Mattick, JS. McLean CA. North, KN. Turner, A. Addison, C., , The Future of Precision Medicine in Australia.Report for the Australian Council of Learned Academies,. 2018, Australian Council of Learned Academies (ACOLA): https://acola.org.au/wp/wp-content/uploads/PMED_full.pdf.
35. Duckett, S., Capital Decision-making. The need to change a building block of healthcare., in Capital Charging in the Health Sector- Asset or Liability? 1995, Commonwealth Department of Human Services and Health: Sydney. p. 5-8.
36. Hellowell, M., Vecchi, V., An evaluation of the Projected returns to investors on 10 PFI projects commissioned by the NHS. . Financial Accountability and Management, , 2012. 28(1): p. 77-100.
37. Productivity Commission, Private and Public Hospitals Productivity Commission Discussion Draft 2009: Canberra. p. 261.
38. Productivity Commission, Public and Private Hospitals: Multivariate Analysis, Supplement to Research Report. 2010: Canberra http://www.pc.gov.au/inquiries/completed/hospitals/supplement.
By Dr Jane Repin Carthey
Professor Evonne Miller, Dr Lindy Burton and I took part in an online webinar that was put together by the European Union Health Property Network on 4 September 2020. The theme of the session was: Relocate, Repurpose, Reorganize – The hospital response to the pandemic challenge. In our presentation we defined biophilic, salutogenic and eudemonic and looked at examples of these approaches in contemporary Austalian and historic health facilities within Australia and overseasa. All the presentations will be available on line and this post will be updated with the link when it is shared with us.
At the webinar, we presented an outline of our current research project. This project is looking at improving entrances and exits to hospitals and healthcare facilities. Our ethics is approved and our next step will be interviews with selected clinical staff and others to understand how the design of their working areas assists or impedes the delivery of care. Our research has now further expanded to look at how COVID-19 is impacting on the use of these spaces and how this could affect the future design of entrance and exit areas in hospitals and other healthcare facilities. We are pursuing biophilic, salutogenic and eudemonic approaches to the design of these essential facility spaces. Practical outcomes will include design suggestions for achieving improved workflows while providing patient friendly and supportive environments for all users.
We recorded our presentation and you can access it from the YouTube link below. Further seminars will be held over the next couple of months. Information regarding these free events, including how to enrol, will be posted on the Australian Health Design Council LinkedIn group and tweeted when available. Follow us via the link below.
So, please stand by for future updates on our exciting research project and for other projects to be conducted by the QUT Design Lab and in particular the projects arising from the HEAL project. HEAL is the Health Excellence Accelerator Lab and is based in the Faculty of the the Creative Industries at QUT.
More information about both of these initiatives is available in the video or from the URL shown above. We welcome all your comments and input.
Although the Covid-19 pandemic has been happening for several months, the importance of the physical environment in supporting the increased hospitalisation of patients has not yet been fully documented for Australian hospitals and healthcare facilities. Many peer-reviewed publications have been looking at operational issues for handling Covid-19 patients including admissions procedures, Covid testing, and how to maintain infection prevention and control within facilities. Other articles can be found in on-line trade magazines or in letters to the editor in academic and other journals, and some of these address features of the physical environment that will assist with these identified issues. Quite rightly, many documents concentrate on the need for healthcare workers to stay safe and Covid-free.
Other papers look at the issues of maintaining the everyday work of hospitals for all community members while continuing to treat Covid patients especially those requiring intensive care and/or ventilation. These papers often report on operational approaches to streaming of patients within facilities from the point of approach or entry to diagnosis and treatment areas, so that cross-infection is prevented between those patients with and those without Covid diagnoses. This includes the further dimension of ensuring that staff members remain safe and Covid-free. The recent experience in Victoria has shown how difficult this can be and how easily this task can be derailed in the face of massive Covid admissions due to community transmission of the virus.
Creating and maintaining patient-friendly environments is now an even greater challenge for healthcare designers also faced with the technical requirements for keeping people safe and Covid-free. Can we satisfy the requirements for salutogenic and healing environments whilst all responding to the urgent needs of addressing this current pandemic. As designers, are we up to it?
This post lists some useful resources that I have discovered in the last week or so. Some result from a literature review, others from google searches, and reviews of healthcare design sites. Other resources or references are available from the National Health Service of the UK (NHS), and from professional bodies such as the Royal Institute of British Architects (RIBA) and the American College of Healthcare Architects (ACHA).
How about Australia? I just interrupted my writing to check if the Australian Institute of Architects (AIA) has published anything on this subject for its Australian members – but no, it doesn’t appear that they have so far. Hopefully, we will get some local content in the near future from the AIA and our other professional design organisations that address our local condition and needs.
My colleague Warren Kerr is the Immediate Past President of the Union of International Architects Public Health Group (UIA-PHG). The UIA-PHG has been pulling together resources from countries around the world and you can find this list of resources at https://www.uia-phg.org/covid-2. You may have to register to access this site, but it is free and easy to do.
An open letter to the Health Environments Research and Design (HERD) journal was written in March and published by the journal in July this year. (Hercules, Anderson, & Sansom, 2020) It has also appeared online in Canadian Architect, Architect Magazine, and SALUS Global Knowledge Exchange. All these sites have other articles relating to Covid-19 design responses – some may be reviewed by this blog in the future.
The open letter was written jointly by an architect, a doctor/architect and a knowledge researcher to emphasise the need for urban designers and architects to be engaged in developing solutions to deal with pandemics like COVID-19. The authors note the sometimes-clumsy improvisations that have been used to address the current situation. They argue that the built environment is critical for responding appropriately to pandemics and to assist the community in being prepared for all types of emergencies including climate related ones.
Although other locations may be considered for treating very ill patients such as hotels, and even cruise ships, utilising existing hospital infrastructure should always be the preferred approach. However, “surge capacity” in existing hospitals is often insufficient partly due to health system changes in recent years that saw major reductions in bed numbers and the move of diagnostic and treatment services to community settings. The need to repurpose parts of a hospital to cope with an influx of patients e.g., converting recovery spaces to intensive care spaces, or creating more isolation rooms is a challenge that Australia may not yet have had to face to a great extent. It will definitely be something we need to respond to in the future.
Building hospitals in a few days as happened in China set a precedent in pandemic design responses and clearly required careful planning and strong, pre-established supply chains. Yet this type of hospital would probably not meet current design standards in most first world countries. Equipping and staffing these facilities quickly is another challenge to be overcome.
Urban planning and city design must respond to the possibility of future pandemics and public health input is critical for this to happen. The responses that we have seen to date including the use of digital technologies have encouraged long-awaiting innovation in areas such as telehealth. Shutting down cities and quarantining residents has been another response but this is a blunt and crude instrument that damages local and global economies and requires a long recovery time for any community. Yet at present this second approach is the only strategy that seems to truly cut diseases off close to source without infecting large numbers of people or worse still, the whole healthcare system.
So, the path forward requires bringing together policy makers with qualified medical and design professionals to ensure our cities and healthcare system can cope with the next pandemic (and rest assured, there will be one!). There are various practical solutions available that include: modular buildings and components, 3-D printing for building modules and equipment, and quickly creating field type hospitals on playing fields and in public car parks. Future articles on this topic will look at some of these solutions plus others that policy makers, clinicians and architects could consider for implementation in the Australian setting.
Hercules, W. J., Anderson, D. C., & Sansom, M. (2020). Architecture—A Critical Ingredient of Pandemic Medicine: An Open Letter to Policy Makers. HERD: Health Environments Research & Design Journal, 13(3), 247-252. https://doi:10.1177/1937586720928432
Kacik, A. (2020). Pandemic prompts flexible healthcare design. Modern Healthcare, 50(20), 2
https://www.modernhealthcare.com/construction-design/pandemic-prompts-flexible-healthcare-design
Edwards, N. (2020). Here to stay? How the NHS will have to learn to live with coronavirus. Nuffield Trust. https://www.nuffieldtrust.org.uk/resource/here-to-stay-how-the-nhs-will-have-to-learn-to-live-with-coronavirus
Noble, J., Degesys, N. F., Kwan, E., Grom, E., Brown, C., Fahimi, J., & Raven, M. (2020). Emergency department preparation for COVID-19: accelerated care units. Emergency Medicine Journal, 37(7), 402-406. https://doi:10.1136/emermed-2020-209788
I recently peer-reviewed an academic paper that explored how well architects and other designers understand and value ‘research’. The author also looked at the degree to which architects engage in or initiate research studies, and then apply original findings to their projects. Reading this paper led me to reflect on how architects define research, and the place of it within the myriad of other information sources that influence architectural work. It also led me back to some research that I conducted earlier in my academic career in conjunction with the then Royal Australian Institute of Architects that investigated the sources of information that architects preferred to use to support their practice.[1]
Research can be defined as the search for, and creation of new knowledge. There may be a problem to solve, an idea to be tested, or facts to be established. Research requires more than simply the compilation of existing knowledge to answer a question or to provide evidence for a design decision. In other words, more than simply reading design magazines or trade journals looking for ideas – although this can be useful. Research findings should also be shared, tested, and hopefully evolved by means of further research. Yes, it never ends!
Design research has its own characteristics and application of it to design decision making is different to how research findings are applied in other fields of practice. Some designers are suspicious of research perhaps thinking that using its findings will reduce their creativity or cramp their methods of working. Healthcare designers cannot afford to think this way as they must work with clinicians and other users who use research to guide their practice for example, Evidence-based Medicine (EBM) that relies on the outcomes of scientific, and usually quantitative research. Evidence-based Design (EBD) is often promoted as the design equivalent to EBM. This is a simplistic response that often fails to appreciate how design practice differs from clinical practice especially in terms of how decisions are made by practitioners in each professional area of expertise. This is an important topic that I will talk about in future posts.
My study was undertaken in 2005 and published in 2007, but I suspect not much has changed in the meantime. The results of a survey showed that healthcare designers most preferred to use their own experience from previous projects plus their own ‘research’ followed by information provided by their client. Guidelines and standards came next. The nature of ‘original’ research was unfortunately not further explored by the study but would have been an interesting question to ask at the time. Research summaries by others were tenth in the list as can be seen in the table below.
The 2007 paper discussed the findings shown in the table, and suggested that personalised and subjective approaches to information use are common among healthcare designers. The pressures of practice and time constraints also work against the use of more research findings by design practitioners. Further digesting the research findings to inform design decisions may require interpretative skills that not all designers possess as a result of their previous professional training and practice. Yet these days, the increasing use of EBD means that more designers are accessing research findings and quoting them in their submissions and to support their design decisions.
Hopefully, design students are increasingly being initiated into the world of research and given the opportunity to conduct small scale research exercises as part of their studies. In the world of practice, post occupancy (POE) and other forms of design evaluations offer the opportunity to gather research data. These opportunities offer healthcare architects the means to contribute towards developing a body of knowledge around how to improve healthcare design projects in Australia and other countries. Project clients such as Health Infrastructure (HI) NSW use POE to inform development of health facility guidelines and this is highly appropriate. To understand more about how HI NSW undertakes POE, you can view the presentation on the subject (available to members only) in the Australian Health Design Council past presentation archives.
POE is also relevant to practice settings, for disseminating information and ongoing education of healthcare design practitioners as they go about their daily work. So let’s have a conversation about designers and research as an introduction to using the research showcased by this blog.
[1] Carthey (2007), Healthcare designers and information use, Connected 2007 International Conference on Design Education, 9-12 July, UNSW, Sydney, Australia.
By Dr Harm Hollander
Harm Hollander is a Principal with Conrad Gargett and has a desire to advance improvements in the health care environment. A Fellow of the Australian Institute of Architects, Harm has also lectured in Construction, Professional Studies and Design at various universities. He has developed comprehensive skills in leading large projects from commencement to completion, working meticulously through brief, design and delivery challenges. As a recent graduate with a Doctorate of Creative Industries, Harm remains the student in seeking further improvement towards better design outcomes.
Design flexibility inside a hospital building serves as an enabler for a health service to clinically progress. The definition of flexibility has, however, had a disparate response from various researchers and a lack of a universal understanding has led to a restricted over-arching view. This resulting level of comprehension directly affects a potential design. Design, being a responsive solution to a set of issues, attempts to develop a synthesis from a wide range of inputs. The more comprehensive the inputs, the more enhanced the design solution can be. This research investigated the relationships of flexibility categories inside hospitals, recognizing the subject consists of physical solutions, human behavior, wider systems, accessibility towards ready-change and prioritization. In the first instance, it presented a summarized, objective-based, open-ended, method of approaching flexibility inside hospitals.
The research framed and collated divergent existing knowledge. This mapping formed a basis to respond to the future with innovative designs, by first allowing an understanding of both the objectives and techniques of flexible design. The resulting publication, 99 ways towards flexibility inside hospitals, communicated the synthesized and collated catalogue of available methods. Design opportunity could therefore follow as a response.
An often-cited constraint of a premanufactured module system is its tendency to be delivered with non-flexible, load-bearing walls or at least, with added bracing inside the partitions to face the harshness of transit. Any such hindrance towards future change to walls is certainly not flexible and does not allow the hospital to keep up with the health service. A health service nowadays is fast-developing, and the building which accommodates it needs to be responsive to the accelerating need for change. In some premanufacturing projects, this first barrier to flexibility has been overcome by providing an independent structural frame, rather than load bearing walls. The need for the additional bracing has also been overcome by making these elements redundant (or at least, relocatable) after the building modules are assembled on site. Designers must, of course, remember to clearly identify the expendability of the bracing so that it is clear to ongoing trades who open up walls in the future.
However, hospital flexibility is more than the ability to move the internal walls. Once the changeability of partitions has been tackled, there are many further adaptability opportunities in modular construction. These include:
Consistent presentation: It is an advantage for hospital users to utilise repeated building elements. An example may be a uniform consulting room. The uniform presentation ensures familiarity and a universal procedure[1], reducing a risk of errors (in health care, a small lapse of attention can be significant). Prefabricated building units have a greater chance of keeping their elements similar because of their regular set-out and the factory technique embedded into the nature of production.
Universal rooms[2]: Generic rooms which suit multiple functions. For instance, a bed room may be structured to suit a regular patient, mother, child or obese patient. Each function can swing with little alteration. With the room being suited for multi- purposes at the outset, it is likely to be rounded to a size which suits the multipurpose function and this again coincides with modular construction where the regular manufactured component is also expediently rounded. The result of the premanufactured module technique is a planning layout which is more likely to serve multi-use universality.
Modular planning: The technique allows zones to capture a number of varying suites or rooms. Examples may include a series of operating suites or imaging modalities. Unlike universal rooms, this technique is more an allocated floor allowance, requiring a level of construction to move from one state to another. The technique is significant because it allows evolving change to clinical needs. Again, premanufactured construction is more modulated by its nature and has a greater predisposition towards modulated planning allowances.
Approaches to Flexibility
The informed and collated flexibility offered by prefabricated modular building systems represents the opportunity. Naturally, these advantages do not just fall into place. Designers will need to develop informed planning priorities to gain the benefits. Each new design should strive to improve the last. This process will incrementally increase value as well as the ability for hospitals to better face the future.
Since global approaches to hospital design have substantial commonalities, this research contributes to enhancing the design of future universal hospital stage-sets. The potential provides founding information to design continued improvements in clinical outcome, efficiency, value and satisfaction.
[1] There is ongoing opinion on whether reverse handing or mirroring layouts present enhancements or hindrances.
[2] Some variances on this theme are loose-fit rooms, the ‘duffle coat’ approach (reference to a limited range of incremental sizes of a coat in a few select sizes, to fit all) and multi-purpose rooms.
Author: Dr Jane Repin Carthey
Ever wondered why we consult with user groups on healthcare design projects? We all know that user groups can be really helpful but they can also be incredibly frustrating. As every healthcare designer knows, managing the user group process efficiently and effectively is key to getting the best out of it for our projects.
My recent research for a Doctorate in Creative Industries asked why the user group process came about. It also explored how those who have experienced it on recent projects in Australia and New Zealand rate its success. It also looked at how different types of users (e.g., clinicians, managers and designers) think about key issues such as design quality and the importance of this in creating a successful project. Users were defined as those who will “use” a new or refurbished healthcare facility. They will work together in a design user group usually led by a designer or project client representative such as a project manager/director, drawn from an inhouse role or an external consultant.
So what were the main findings?
Designers are more likely to have greater experience with health design projects than other user group participants
Clinicians are more likely to believe that the user group process achieves ‘poor outcomes’ for projects than designers believe.
In terms of achieving the requirements of project clients or funding bodies, clinicians were more likely to feel that the process achieves poor outcomes.
No surprises there either for anyone who has been through a user group process!
I am going to touch on a few key suggestions now, and expand on them in future posts.
To start with I suggest that we need to do the following things better:
This is just a very short introduction to the findings from my research. I will share more in future posts. I look forward to your comments and discussions on this topic.
A workshop run at the ACHSM Conference in 2019 worked with users to create greater understanding around how to improve the user group design process – more on this in future posts!
My next post will look at how our professional training shapes the way we see the world, analyse problems, and collaborate with other professionals.
Supporting robust, practical, rigorous, academic evidence for healthcare design. About the Blog
The Australian Health Design Council © 2023 All rights reserved | Subscribe to our email list | Get in touch